Poincaré Semigroup Symmetry as an Emergent Property of Unstable Systems
نویسنده
چکیده
The notion that elementary systems correspond to irreducible representations of the Poincaré group is the starting point for this paper, which then goes on to discuss how a semigroup for the time evolution of unstable states and resonances could emerge from the underlying Poincaré symmetry. Important tools in this analysis are the Clebsch-Gordan coefficients for the Poincaré group.
منابع مشابه
2n-Weak module amenability of semigroup algebras
Let $S$ be an inverse semigroup with the set of idempotents $E$. We prove that the semigroup algebra $ell^{1}(S)$ is always $2n$-weakly module amenable as an $ell^{1}(E)$-module, for any $nin mathbb{N}$, where $E$ acts on $S$ trivially from the left and by multiplication from the right. Our proof is based on a common fixed point property for semigroups.
متن کاملA case Report of Cardiac Hydatid Cyst found during an Emergent Tamponade Surgery in an Unstable Patient
Cardiac hydatid cysts are uncommon and pericardial involvement is extremely uncommon. We report a rare case of a cardiac hydatid cyst that was surprisingly found during an emergent tamponade surgery in a woman. She was pale, febrile, ill and toxic and 300cc turbid and purulent fluid was drained. In taking history, it was found that the patient had six sheep dogs in her house. Laboratory analys...
متن کاملThe universal $mathcal{AIR}$- compactification of a semigroup
In this paper we establish a characterization of abelian compact Hausdorff semigroups with unique idempotent and ideal retraction property. We also introduce a function algebra on a semitopological semigroup whose associated semigroup compactification is universal withrespect to these properties.
متن کاملDescription of Unstable Systems in Relativistic Quantum Mechanics in the Lax-phillips Theory*
We discuss some of the experimental motivation for the need for semigroup decay laws, and the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips S-matrix. In the case of discrete (complex) spectrum of the...
متن کاملRepresentation of Quantum Mechanical Resonances in the Lax-phillips Hilbert Space
We discuss the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips S-matrix. In the case of discrete (complex) spectrum of the generator of the semigroup, associated with resonances, the decay law is exact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005